
Planning, Learning, and Executing in
Autonomous Systems

RamSn Garcia-Martlnez Daniel Borrajo
Departmento de ComputaciSn Departamento de Inform£tica

Facultad de Ingenieria Escuela Polit~cnica Superior
Universidad de Buenos Aires Universidad Carlos HI de Madrid
Bynon 1605. Adrogue (1846) 28911 Legan~s (Madrid), Espafia

Buenos Aires. Argentina
email: rgm@mara.fi.uba.ar dborrajo@ia.uc3m.es

Abs t rac t . Systems that act autonomously in the environment have to
be able to integrate three basic behaviors: planning, execution, and learn-
ing. Planning involves describing a set of actions that will allow the au-
tonomous system to achieve high utility (a similar concept to goals in
high-level classical planning) in an unknown world. Execution deals with
the interaction with the environment by application of planned actions
and observation of resulting perceptions. Learning is needed to predict
the responses of the environment to the system actions, thus guiding the
system to achieve its goals. In this context, most of the learning systems
applied to problem solving have been used to learn control knowledge for
guiding the search for a plan, but very few systems have focused on the
acquisition of planning operator descriptions. In this paper, we present
an integrated system that learns operator definitions, plans using those
operators, and executes the plans for modifying the acquired operators.
The results clearly show that the integrated planning, learning, and ex-
ecuting system outperforms the basic planner in a robot domain.

Keywords: Planning, unsupervised machine learning, autonomous intelli-
gent systems, theory formation and revision.

1 I n t r o d u c t i o n

Autonomous intelligent behavior is an area with an emerging interest within
Artificial Intelligence researchers [6, 10, 13, 14]. It integrates many areas, such as
robotics, planning, and machine learning. This integration opens many questions
that arise when designing such systems, such as how operator descriptions can
be incrementally and automatically acquired from the planning/execution cycle,
or how a planner can use incomplete and/or incorrect knowledge, as mentioned
in [17]. With respect to learning, autonomous systems must generate theories of
how their environment reacts to their actions, and how the actions affect the
environment. Usually, these theories are partial, incomplete and incorrect, but
they can be used to plan, to further modify those theories, or to create new ones.

209

Among the different types of machine learning techniques, those based on
observation and discovery are the best modelers for human behavior [5]. Thus,
it is interesting to study how an autonomous system can automatically build
planning operators that model its environment [6, 7]. In this context, machine
learning applied to planning has mainly focused on learning control knowledge in
many different ways such as: macro-operators, control knowledge, or cases. There
is also currently a big trend on learning state transition probabilities in the con-
text of reinforcement learning [15, 18]. However, very few have approached the
generalized operators acquisition problem [3, 17], which is crucial when dealing
with systems that must autonomously adapt to a changing environment.

We present in this paper a system, LOPE, 1 that integrates planning, learn-
ing, and execution in a closed loop, showing an autonomous intelligent behavior.
Learning planning operators is achieved by observing the consequences of exe-
cuting planned actions in the environment [7]. 2 In order to speed up the conver-
gence, heuristic mutations of the observations have been used. Also, probability
distribution estimators have been introduced to handle the contradictions among
the generated planning operators. The learning technique integrates ideas from
genetic algorithms (mutation as a learning operator), reinforcement learning
(dealing with operator success probabilities and rewards), and inductive learn-
ing (generalization and specialization learning operators). The learning mecha-
nism allows not only to acquire operator descriptions, but also to adapt those
descriptions to changes in the environment. The results show how the learn-
ing mechanism outperforms the behavior of the base planner with respect to
successful plans (plans that achieve self-proposed goals).

Section 2 describes the general architecture of the LOPE system, defining its
architecture and top-level algorithm. Section 3 defines the representation that
will be used in the paper for situations, observations and planning operators.
Section 4 presents the learning model and its components. Section 5 defines the
planner. Section 6 explain the performed experiments. And, finally, Section 8
draws the conclusions of the work.

2 G e n e r a l S y s t e m Description

The integrated system learns, plans and executes in a simulated world according
to the robot model described and used by many authors, such as [10, 12]. In
this context, a model of the environment refers to a mapping between perceived
situations, performed actions, and expected new situations, which is different
from high-level models of the environment used by classical planners. The au-
tonomous agent type of world are two-dimensional grids, where each position
of the grids can have different elements, such as obstacles, energy points, or be
empty. The objective of the LOPE system is to learn operators that predict the
effect of actions in the environment, by observing the consequences of actions.

1 LOPE stands for Learning by Observation in Planning Environments.
2 When we talk about environment, we do not refer to a unique setup, but to the

generic concept of environment.

210

The system can be described as an exploring robot that perceives the en-
vironment, applies actions, and learns from its interaction with the world. At
the beginning, the system perceives the initial situation, and selects a random
action to execute in the environment. Then, it loops over a code that executes
an action, perceives the resulting situation and utility of the situation (explained
in section 4), learns from observing the effect of applying the action in the envi-
ronment, and plans for further interactions with the environment. The top-level
goal of the planning algorithm is implicit in the system: achieving a situation
with the highest utility; the goal is not an input to the system. This fact does not
remove generality to the overall architecture, since the function that computes
the utility can be changed to the one that reflects other types of goals. Figure 1
shows an schematic view of the architecture, where the allowed actions is the set
of actions that the robot can perform in the environment.

Allowed
Actions

Perception Actuation l I Actions Environment

Situations LOPE Utilities ~

f ~ Observations
Situations [Plans ~ lities

Fig. 1. Architecture of the Integrated System.

3 Representation

For LOPE, as for many other systems, there is a difference between the world
states, common to classical planning, and the observations it perceives. While
classical planners are mainly interested in the high-level descriptions of the states
(e.g. on(A,B) in the blocksworld), LOPE builds its operators based on the per-
ceptions it gets from its sensors. Its "states" are the inputs it receives from its
sensoring system. Currently, there is no post-processing of its inputs for trans-
lating them into high-level descriptions. The model of the sensoring system is a
modified version of the one proposed by [10], who suggested a system with 24
sectors, distributed in three levels. We use a model with eight sectors in two
levels (close and distant sensing), and three regions (Left, Frontal, and Right)
as shown in Figure 2. The values of each sector conform a binary vector of eight
positions that describe each situation. A value of 1 in a position of the vector
means that the corresponding sensor has detected something in its sector.

Previous work of the authors developed early versions of the learning mecha-
nism [7, 8]. The representation was based on the model proposed in [6], in which
an observation (also called experience unit) had the following structure:

211

Frontal Region

Distant Se~.sing
Sensing

(~)

Right Region

11121314151617181

(b)

Fig. 2. Divisions of the sensoring system (a) and its internal representation (b)

[Initial Situation, Action, Final Situation]
Observations were directly used as planning operators. In this paper, while

the concept of observation does not change, the representation of operators
is extended, by the addition of features that allow to determine their plan-
ning/execution acceptability. The proposed planning operator model has the
following structure and meaning:

P L A N N I N G O P E R A T O R : 04
Fea tu re Descr ip t ion Values

C Initial Situation (conditions) s-vector
A Action action
F Final Situation s-vector
P Times that the operator Oi was successfully applied integer

(the expected final situation, F, was obtained)
K Times that the action A was applied to C integer
U Utility level reached applying the action to real 0.. 1

the initial situation, C, of the operator

where s-vector is a vector of eight positions and each position can have a 0,
1, or ?. The value ? means "it does not mat ter the value of that position". We
have used the following actions for the value action: go, turn-left, turn-right, and
stop. U is a function of the distance of the robot to the closest energy point. It
is computed by the environment as

1
U (S , P) =

I1 -d(S,P)I
where S is the robot position, P is the closest energy point, and d(S, P) is

the distance between S and P . Then, this measure is given to the system as an
input.

4 Learning Planning Operators

We will first define the concepts of similar and equal operators needed for the
learning method, to further detail the learning method, present an example, and
discuss the mutation heuristics.

212

4.1 Definitions

Given two operators 01 = [C1, A1, F1, P1, K1,/]1] and 02 -- [C2, A2, F2, P2,/<2, U2],
and an observation 0 = [S1,A, S2], we say that:

• The two operators are similar if 6'1 = C2 and A1 = A2.

• The two operators are equal if C1 = C2, A1 = A2, and F1 = F2.

• The observation is s imi l a r to the operator O1 if $1 C CI and A --- A1.

• The observation c o n f i r m s the operator O1 if $1 C C1, A = At, and $2 C_ F1.

4.2 Learning Algorithm

Suppose a situation $1 is perceived by the system, and there exists a set of
operators, (_9, such that each operator is of the form Oi = [C, A, F, P, K, U]. If
the system applies the action A, arriving at a situation $2, the learning method
processes this checking whether it is similar to any operator.

• If it is similar, it checks to see if the observation confirms the operator. Then,
it rewards all such operators and punishes similar ones. If a similar operator
exists, but there is none that is confirmed by the observation, it creates
a new operator, punishes similar operators to the new one, and mutates
those similar operators. The operators generated by the mutation procedure
reward equal operators and punish similar ones.

• If it does not find a similar operator for the input observation, it creates a
n e w o n e .

Punishing operators means incrementing the number of times that the pair
(condition,action) of similar operators to O has been observed. The effect of
incrementing their K is equivalent to punishing them. Also, rewarding operators
means incrementing the P and K of a successful operator, with the equivalent
effect of rewarding it. With respect to the utility, the system will record, for
each operator, the utility of the highest-utility situation achieved by applying
the operator action to the operator condition situation. 3

4.3 Example of Learning Episodes

Suppose that the robot does not have any knowledge on how the environment
will react to actions that are applied by the robot. We will see now how the
system builds a set of operators from the observations oi, o2 and o3, tha t do
not have to necessarily be observed in consecutive instants of time, since other
actions could have been applied in the middle.

ol =(00001001,GO,00000000) with U = /]1
02 =(00001001,GO,00001111) with U = U2
03 =(00001001,GO,00000000) with U = U3

3 Since the final situation can be generalized, there might be more than one utility.
Only the highest is stored.

213

After observing ol, according to the algorithm described before, it gener-
ates a new operator Ot=[00001001,GO,00000000,1,1,U1]. When it later observes
02, it finds out that there is a similar operator, O1. Thus, it first includes
the new operator 02 = [00001001,GO,00001111, 1,2, U2] into the set of op-
erators O. Then, it punishes the similar operators (only O1 in this case), chang-
ing it to be O1 = [00001001, GO, 00000000, 1, 2, U1]. Then, it calls the muta-
tion heuristics to create mutated observations. Among other mutation heuris-
tics, the retraction heuristic, would generate the mutated observation m =
[00001001, GO, 0000????, U], where U would be U1 in this case. Since it now
finds that there are similar operators, O1 and 02, it adds a new (mutated) oper-
ator, 03 = [00001001, GO, 0000????, 1, 3, U1], and punishes all similar operators
by incrementing their K, leaving Oas :

O1 = [00001001,GO,
02 = [00001001,GO,
03 = [00001001,GO,

00000000,1,3, U1]
00001111,1,3, U2]
0000????,1,3, U1]

For LOPE, the new mutated operator 03 predicts what will be the final sit-
uation after applying the action GO to the initial situation 00001001 as well as
O1 and 02 do. This is why P03 = 1. A value of three would mean a stronger
relation between 03 and O1/O2. When it observes 03, which is a confirmation
of operators O1 and 03, it rewards all operators equal to the observation (O1
and 03), and punishes all operators that are similar (02). Since it rewards both
operators O1 and 02, the K of all operators gets increased to 5. The final set of
operators is:

O1 = [00001001, GO, 00000000, 2, 5, U1]
02 = [00001001, GO, 00001111, 1, 5, U2]
03 = [00001001, GO, 0000????, 2, 5, U1]

4.4 Heuristic Mutat ion of Operators

The heuristic mutation of operators is based on the heuristics defined in [9]
and [11]. Hayes-Roth proposed a set of heuristics for revising a faulty (buggy)
theory, in the framework of theory revision. We selected which heuristics were
applicable for the chosen vector representation, and transformed those for cor-
recting violated expectations of plans.

• R e t r a c t i o n : generalizes an operator predicted situation so that it is consis-
tent with the new observation.

• Exc lus ion : restricts the conditions of the operator, so that it does not apply
to the observed situation again.

• Avo idance : also restricts the applicability conditions of the operator by
conjoining negated preconditions that axe sufficient for not predicting the
observed situation again. Since the implementation of this heuristic in the
chosen vector representation arrived to a similar procedure as the previous
one, we did not use this heuristic.

214

• I nc lu s ion : generalizes the operator conditions, so that it will later apply in
the observed situation.

• A s s u r a n c e : generalizes the conditions of the operator, so that it can be ap-
plied in the future to assure the predicted effects. Again, the implementation
of this heuristic was similar to the previous one, so it was not used.

Salzberg heuristics are used to correct prediction violations. He proposed the
following heuristics for revising predicting rules in a racing domain. We also
transformed those heuristics to the vector representation. As in the previous
case, we did not implement all heuristics, given that some of them do not have an
equivalent when one does not have a knowledge-rich domain theory as Salzberg
had.

• I n u s u a l i t y : restricts the condition of an operator, so that it will not longer
apply to the observed initial situation.

• I g n o r a n c e : assigns the fault of using an operator to unknown relations.
Salzberg used a propositional representation with variable length, and since
we are using a vector-based representation (fixed length representation), we
could not use this heuristic.

• G u i l t y : has a set of predefined possible causes of fault in an operator, such
that when a fault appears, the heuristic checks whether one of those causes
is present in the observed situation. We did not implement this heuristic,
since we could not find such a set of predefined causes, such as "when the
first two bits are 1 in the situation", given that this domain does not have a
rich domain theory.

• C o n s e r v a t i o n i s m : is a meta-heuristic that selects the mutation heuristic
(from the Salzberg ones), that proposes less modifications in the conditions
of an operator.

• S imp l i c i t y : is a generalization of the Hayes-Roth retraction heuristic in that
it generalizes several operators into one.

• A d j u s t m e n t : when the P/K ratio of an operator falls below a given thresh-
old, it is very unlike that the operator will correctly predict any situation.
If it is a generalization of a set of operators (for instance, by application of
the simplicity heuristic), this heuristic generates other combinations of those
operators that will increase the ratio.

5 Planning

The planner builds a sequence of planning operators 4 tha t allows to efficiently
reach the top-level goal of having the highest utility (being on top of an energy
point) by being on a situation which yields such utility. In case another domain
requires a more classical high-level set of goals (as in the case of the blocksworld

4 In this case, the term operator and action are equivalent with respect to planning
and execution, given that operators do not have variables.

215

or logistics transportation), a richer representation would be needed. The plan-
ning and learning components would have to be changed accordingly, but the
overall architecture and techniques would still be valid.

Since each operator has its own utility, the planner will t ry to build plans
that transform each current situation into the situation described by the condi-
tion of the operator with the highest utility; tha t is, the operator tha t achieves
the highest utility situation (its final situation). Therefore, these conditions are
subgoals of the top-level goal. The resulting plan will allow the execution module
to perform a set of actions that interact with the environment in such a way that
it arrives to a situation in which the action of the highest utility operator can
be executed (the conditions are met), thus achieving that level of utility.

5.1 B u i l d i n g a P l a n

The planning algorithm proceeds as follows. At the beginning, there are no opera-
tors, so the system generates a default plan by randomly selecting whether to act
randomly, or to act by curiosity/exploration (by approaching a close obstacle). 5
If the system already has some operators, it builds a list of goals, each of them
is a pair (situation,operator), where situation is the final situation of the oper-
ator. This list is ordered by decreasing values of the utility of their respective
operators. For each subgoal, the planner tries to find a plan that can transform
the current situation S into one of the subgoals. Since it first tries the goals with
higher utilities, and it stops when it finds a plan, the planner will find a plan for
achieving the highest utility reachable goal. If the planner cannot find a plan for
any goal, it generates a default plan according to the default planning procedure
described above.

In order to create a plan to achieve a goal, the planner creates a graph by
backward chaining on the goal. Since the goals are pairs (situation,operator),
the root of the search tree will be the situation, that will only have one successor
labeled with the operator of the goal. For each situation in the search tree, it
creates a node, and a successor for each operator whose final situation matches
that situation, and contirmes backwards until it cannot expand more nodes. GoM
loops (repetition of the same situation in the path from a node to the root) are
detected and search stops under those nodes. When it finishes the expansion of
the tree, if the current situation appears in the graph, there exists at least one
plan that can achieve the goal from the current situation.

As an example of how this algorithm proceeds, suppose that the system al-
ready built the set of operators shown in Figure 3(a), where there are two actions
A1 and A2, and five situations $1 to $5. The search space corresponding to those
operators is shown in Figure 3(b), where each node represents a situation, and
each arc is labeled with a tuple (A, P, K, U), where A is the action of the op-
erator, that transforms a situation into another, P and K are the features that
capture the information on success probability (explained in subsection 5.2), and
U is the operator utility.

5 The system is close to an obstacle when there is a 1 on any element of the input
vector.

216

01=($1, A1, $2,3, 4,0.6)
02=($1, A1, $4,1,4,0.4)
Oa=(S2,A2,Ss,3, 4,0.4)
O4=($2, A2, &, 1, 4,1)
Os=(Ss, A1, $1,3, 3, 0.4)
06---($4, A2, &, 1,1, 0.8)
OT=(Ss, A~, $4,1, I, 0.2)

(a)

Q
(A i ,3,3,(~ / ~ 2,3.4,0.4)

Q (A 13406) ~

(b)

Fig. 3. Example of planning operators (a) and their graph representation (b).

Given that search space, if the planner tries to find a plan to achieve the
higher utility reachable goal from the current situation $1, it would first generate
the list of pairs (goai-situation,operator) in descendent order of utility. In this
case, the list would be:

[(&, O4)(&, 06)(S2, 01)(&, 02)(&, 03)(S1, O5)(S4, 07)]

As ($5, 04) has the highest utility level, the system builds the search tree
shown in Figure 4, where the root is the situation $5, its only successor is the
condition part of the operator O4: situation $2, and the arcs are labeled with
the actions and operators that transform a situation in another. Search stops
under nodes of situations Sa (twice) and Ss since the only way to obtain those
situations is from situation $2 which would cause a goal loop.

®
I A2,O4

®
Y v ' ~

A105 A l .O2, ~ AIO 7

Fig. 4. Search tree generated when planning to achieve situation $5 from $1.

There are two plans that reach $5 from $1:O1 o 046 (actions A1 and A2)
and 02 o 06 o O4 (actions A1, A2, and A2). The planner selects the shortest plan,
which is O1 o 04 (A1 o A2).

8 o represents the composition of operations.

217

5.2 Stochast ic P lann ing

In order to estimate the probability of success of plans, the planner is based
on an extension of the theory of stochastic automata. The knowledge that the
system has at a given time, the set of planning operators, can be viewed as a
model of how its environment will react to the system's actions. The quotient
Po~/Ko~ of a given operator 0~, is the probability estimator of the fact that given
the action Ao~ applied to a situation Sj that matches the operator conditions
(Sj C_ Col) results in a situation Sk that verifies the predicted effects of the
operator (Sk C_ Fo~). We have shown in our previous work that this estimator
is an unbiased estimator that follows a multinomial probability distribution.
Therefore, the knowledge that the system has of the effects of an action A~ at
a given instant can be represented by the transition matrix MAi, that has on
the (j, k) position the quotient Po~/Ko~ of the operator whose action is A~, its
conditions are Sj, and the predicted effects Sk [2].

The Ps and Ks of the plan operators can be used in the evaluation of the plans
that are generated. This '% priori" estimation of the plan success probability,
allows to discard plans with a low probability of success (P/K < T), where T
is a user-defined threshold. This property is critical when the system must act
without supervision.

As an example, in the previous plan, the transition matrix MA1 associated
to the action A1, the transition matrix MA2 associated to the action A2, and
the transition matrix Mp of the plan P = A1 o A2 are:

S~ $2 $3 $4

$ 2 0 0 0 0
$ 3 1 0 0 0
$ 4 0 0 0 0

0 0 0 1

0
0 ×
0
0
0

S, $2 $3 $4 $5
SIIO 0 0 0 0
s oo o¼
$ 3 0 0 0 0 0
$4 0 1 0 0 0

$ 5 0 0 0 0 0

$1 $2 $3 $4 $5

$ 2 0 0 0 0
$ 3 0 0 0 0
$ 4 0 0 0 0

0 1 0 0
MA1 MA2 MAp

From the analysis of MAy, the probability that the plan P applied to the
situation $1 achieves the situation $2 is ¼, the probability that the plan P
applied to the situation $1 achieves the situation $3 is 9 , and the probability
that the plan P applied to the situation $1 achieves the situation $5 is 3 16"

6 Exper iments and Resul ts

We performed two experiments to test the behavior of LOPE. In the first one, we
averaged the results of running 50 experiments. In each experiment the initial
setup (environment and position of the robot) was randomly selected, and LOPE
performed 8000 cycles of learning, planning and execution. We compared four
versions of the system: the base planner, in which operators are created directly
from the observations, following Fritz et aL work [6]; the base problem solver
using operators learned using heuristic mutation [7]; the base problem solver

218

estimating for each operator its probability of success [8]; and the base problem
solver, in which operators are mutated, and a probability estimator is assigned
to each operator.

We used the percentage of successful plans when comparing these four ver-
sions of the system, and the results of the experiment are shown in Figure 5 (a).
These results clearly show that the combination of mutation and probability
estimation outperform the base planner behavior, and, also, the separate use
of any of them. The combined use of mutation and probabilities make the sys-
tem converge towards a 80% of success plans, while the base planner converges
towards half of it (around 40%).

The second experiment was performed to show the generality of the learned
knowledge, as the knowledge transfer from one setup (environment and initial
position of the robot) to another. We randomly generated a set of setups, PY,
and averaged the results of running 50 times the following experiment: a setup
w was randomly selected from ~42; 8000 cycles were run on w; another setup
w ~ ~ w was chosen from the set 14]; 8000 cycles were run on w I, using the
learned operators in w; and results were collected. The results are shown in
Figure 5(b) where it is shown that the use of previously learned knowledge, even
in another setup, improves the initial behavior as well as the convergence of the
overall system, with respect to the results in Figure 5(a). For instance, while,
in the first experiment, the 70% of success plans was achieved at around 3200
cycles, in the second experiment, the same success ratio was achieved at 1500
cycles.

0 ÷

x x
X X X

0 a
O . O .

. O Q O D

* ÷

Base p[~wet •

~ Piw',n~ o
Mutation ~ ~oclaasuc 1~9n~ x

x x x x x
x • x

" o D o

• o o o . o
o

a

÷ • • • • • . • * • •

÷ 6

x

Paa.nw

lo0o 2 ~ o 3oo0 4 o ~ o ~oo ~oo 7ooo ~ o o lOOO ~oo ~ 4ooor~ sooo ~ 1 o ~ Booo

(a) (b)

Fig. 5. Results of comparing four versions of the system with respect to successful
planning (a) and knowledge transfer.

7 R e l a t e d W o r k

The GINKO system [1] and the LIVE system [12] integrate perception, action and
learning. They both differ from the proposed architecture in the fact that they do

219

not take into account reinforcement nor heuristic-based refinement of operators.
Christiansen [4] also addresses the problem of learning operators (task theories)
in a robotic domain. However, in his work there is no revision process as our
heuristic-based refinement process. DYNA [15] integrates reinforcement learning,
planning and reacting based on approximated dynamic programming. It differs
from our work in the fact that the reinforcement procedure is local to an oper-
ator, while, in our case, the reinforcement of an operator explicitly implies the
punishment of similar ones (global reinforcement).

OBSERVER [17] integrates planning and learning. Wang proposes an incremen-
tal approach for operators revision, where operators evolve during the execution
of the system. However, there is no memory of past versions of the operators as
in LOPE. Another difference relies in the representation language for operators.
Her work used the representation language of PRODIGY4.0 operators [16] tha t is
based on predicate logic, since its goal is to perform classical high-level planning.
Our approach uses a representation that is closer to the inputs and outputs of a
more reactive system, with tow-level planning.

8 C o n c l u s i o n s

There are many real world problems where there is no domain theory available,
the knowledge is incomplete, or it is incorrect. In those domains, autonomous
intelligent systems, defined as systems that learn, self-propose goals, and build
plans to achieve them, sometimes are the only alternative to acquire the needed
domain description. In this paper, we have presented an architecture that learns a
model of its environment by observing the effects of performing actions on it. The
LOPE system autonomously interacts with its environment, self-proposes goals
of high utility for the system, and creates operators that predict, with a given
probability estimator, the resulting situation of applying an action to another
situation. Learning is performed by three integrated techniques: rote learning of
an experience (observation) by creating an operator directly from it; heuristic
mutat ion of incorrect learned operators; and a global reinforcement strategy of
operators by rewarding and punishing them based on their success in predicting
the behavior of the environment. The results show that the integration of those
learning techniques can greatly help an autonomous system to acquire a theory
description that models the environment, thus achieving a high percentage of
successful plans.

R e f e r e n c e s

1. M. Barbehenn and S. Hutchinson. An integrated architecture for learning and
planning in robotic domains. Sigart Bulletin, 2(4):29-33, 1991.

2. Calistri-Yeh. Classifying and Detecting Plan Based Misconceptions for Robust Plan
Recognition. PhD thesis, Department of Computer Science. Brown University,
1990.

220

3. Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: The oper-
ator refinement method. In R. S. Michalski and Y. Kodratoff, editors, Machine
Learning: An Artificial Intelligence Approach, Volume III, pages 191-213. Morgan
Kaufmann, Palo Alto, CA, 1990.

4. Allan Christiansen. Automatic Acquisition of Task Theories for Robotic Manip-
ulation. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, March 1992.

5. B. Falkenhainer. A unified approach to explanation and theory formation. In
J. Shrager and Langley P., editors, Computational Models of Scientific Discovery
and Theory Formation. Morgan Kaufmann, 1990.

6. W. Fritz, R. Garcla-Martfnez, J. Blanqu~, A. Rama, R. Adobbati, and M. Samo.
The autonomous intelligent system. Robotics and Autonomous Systems, 5(2):109-
125, 1989.

7. Ram6n Garcla-Martfnez. Heuristic theory formation as a machine learning
method. In Proceedings of the VI International Symposium on Artificial Intel-
ligence, pages 294-298, M~xico, 1993. LIMUSA.

8. Ram6n Garcla-Marthmz and Daniel Borrajo. Unsupervised machine learning em-
bedded in autonomous intelligent systems. In Proceedings of the 14th IASTED
International Conference on Applied Informatics, pages 71-73, Innsbruck, Austria,
1996.

9. Frederick Hayes-Roth. Using proofs and refutations to learn from experience. In
P~. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning,
An Artificial Intelligence Approach, pages 221-240. Tioga Press, Palo Alto, CA,
1983.

10. S. Mahavedan and J. Connelt. Automatic programming of behavior-based robots
using reinforcement learning. Artificial Intelligence, 55:311-365, 1992.

11. Stephen Salzberg. Heuristics for inductive learning. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 603-609, Los An-
geles, CA, 1985.

12. W. Shen. Discovery as autonomous learning from enviroment. Machine Learning,
12:143-165, 1993.

13. Reid Simmons and Tom M. Mitchell. A task control architecture for mobile robots.
In Working Notes of the AAAI Spring Symposium on Robot Navigation, 1989.

14. Peter Stone and Manuela M. Veloso. Towards collaborative and adversarial learn-
ing: A case study in robotic soccer. To appear in International Journal of Human-
Computer Systems (IJHCS), 1996.

15. Richard Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh Interna-
tional Conference on Machine Learning, pages 216-224, Austin, TX, 1990. Morgan
Kaufmann.

16. Manuela Veloso, Jaime Carbonell, Alicia P~rez, Daniel Borrajo, Eugene Fink, and
Jim Blythe. Integrating planning and learning: The P R O D I G Y architecture. Journal
of Experimental and Theoretical AI, 7:81-120, 1995.

17. Xuemei Wang. Planning while learning operators. In B. Drabble, editor, Pro-
ceedings of the Third International Conference on Artificial Intelligence Planning
Systems (AIPS96), pages 229-236, Edinburgh, Scotland, May 1996.

18. C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning,
8(3/4):279-292, May 1992.

